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We consider the evolution under the action of surface tension of wedges and cones of
viscous fluid whose initial semi-angles are close to π/2. A short time after the fluid is
released from rest, there is an inner region, where surface tension and viscosity domi-
nate, and an outer region, where inertia and viscosity dominate. We also find that the
velocity of the tip of the wedge or cone is singular, of O(log(1/t)), as time, t, tends to
zero. After a long time, the free surface asymptotes to a similarity form where defor-
mations are of O(t2/3), and capillary waves propagate away from the tip. However, a
distance of O(t3/4) away from the tip, viscosity acts to damp out the capillary waves.

We solve the linearized governing equations using double integral transforms, which
we calculate numerically, and use asymptotic techniques to approximate the solutions
for small and large times. We also compare the asymptotic solution for the inviscid
fat wedge with a numerical solution of the nonlinear inviscid problem for wedges of
arbitrary semi-angle.

1. Introduction
Surface-tension-driven flow in a fluid wedge was first analysed by Keller & Miksis

(1983) for the case of an inviscid fluid. This analysis has since been generalized
to consider pairs of fluid wedges with different densities adjacent to a plane wall
(Billingham & King 1995; King, Billingham & Popple 1998). In all of these analyses,
the flow of the fluid and deformation of the interface is of similarity form, lengths
scaling with t2/3. This leads to velocities that scale with t−1/3, and hence are singular
as t → 0. By examining the order of magnitude of the neglected viscous term in the
momentum equation, it is clear that viscosity becomes important for sufficiently small
times and cannot be neglected. We should also expect viscosity to act in the far field
to damp out the capillary waves that propagate there. In order to examine the effect
of viscosity, we study the deformation of a wedge of fluid with semi-angle close to
π/2. In this case, the free surface is initially almost planar and, at leading order as the
semi-angle approaches π/2, we obtain a linear initial/boundary value problem in a
half-space. In § 2, we solve this using Fourier–Laplace transforms. We use numerical
methods to calculate the free-surface deformation for t > 0, and construct asymptotic
approximations to the solution for small and large times.

A problem with more practical relevance is the analagous one involving a cone
of fluid. When a droplet of fluid detaches from a dripping tap at sufficiently low
Reynolds number (Peregrine, Shoker & Symon 1990), the final stage is characterized
by the attachment of a slender bridge of fluid to the droplet. After the fluid pinches
off, the bridge and the droplet both recoil. The slender bridge then forms a series
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of small satellite drops (Keller, King & Ting 1995; Decent & King 1999). We can
attempt to model the recoil of the top surface of the droplet by assuming that, at the
instant of detachment, it is locally a cone with semi-angle close to π/2, as suggested
by the photographs presented by Peregrine et al. (1990). More generally, recent work
reviewed by Eggers (1997) has shown that the breakup of fluid droplets and threads is
often characterized by the formation of two cones, one slender, one fat. For an inviscid
fluid, the fat cone is inverted, with semi-angle approximately 112.8◦ (Day, Hinch &
Lister 1998), whilst for a soap film, treated as a surface-tension-bearing interface
between two inviscid regions of gas, the semi-angle is approximately 127◦ (Chen &
Steen 1997). For a sufficiently viscous fluid, the breakup involves the formation of a
slender thread (Eggers 1997), but Lister & Stone (1998) have recently shown that the
presence of an outer viscous fluid again leads to the formation of a pair of cones.
Although we confine our attention here to a single fluid with no outer fluid, we
expect that our analysis will give some insight into the behaviour of the fat cone after
pinchoff. It is worth noting that, in the literature referred to in this paragraph, the
time used to analyse the singularity is the time remaining before pinchoff, whilst in
this paper we use the time elapsed since pinchoff. We show in § 3 that, although we
must use Hankel–Laplace transforms, the analysis of the problem for the cone is very
similar to that for the wedge. However, the results are quantitatively different, with a
much smaller deformation of the surface of the cone in the far field. Finally, we note
that the cone differs qualitatively from the wedge in that its curvature far from the tip
drives a flow in the far field under the assumption that the pressure tends to zero there.

2. The fat wedge
2.1. Formulation of the initial/boundary value problem

Consider an initially stationary wedge of incompressible fluid with density ρ, viscosity
µ and semi-angle π/2−tan−1 ε. We take the y-axis along the line of symmetry, pointing
into the fluid, and the x-axis perpendicular to this so that the surface of the fluid
initially lies at y = ε|x|, as illustrated in figure 1(a). The surface of the fluid is free
and has constant surface tension, γ. At subsequent times t > 0, the position of the
free surface is given by y = Y (x, t), and the fluid has velocity u and pressure p, as
shown in figure 1(b).

We can construct length, time, velocity and pressure scales from the physical
quantities available in the problem, as

l∗ = µ2/γρ, t∗ = µ3/γ2ρ, u∗ = γ/µ, p∗ = ργ2/µ2. (2.1)

We will neglect the effect of gravity in our analysis. In order to justify this, we can
either appeal to an experiment under conditions of microgravity, or under normal
conditions of gravity construct the Bond number, Bo = ρgl∗2/γ = gµ4/ργ3, which
is small if gravity is negligible. For water, with γ ≈ 0.07 kg s−2, ρ ≈ 103 kg m−3

and µ ≈ 10−3 kg m−1 s−1, this gives l∗ ≈ 10−8 m, t∗ ≈ 2 × 10−10 s, u∗ ≈ 70 m s−1,
p∗ ≈ 5 × 106 Pa and Bo ≈ 3 × 10−11 � 1. As we shall see below, after a large
time, significant deformation of the free surface occurs on the length scale l∗(t/t∗)2/3.
Gravity will therefore start to become important when t/t∗ = O(Bo−3/4) ≈ 8× 107, or
t ≈ 0.02 s. Since l∗ is close to the limit of validity of the continuum approximation,
we should not expect that the small-time solution that we construct below will be
physically relevant for water. However, if we consider a solution of around 85%
glycerol in water, such that the viscosity is about 100 times greater than that of pure
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Figure 1. The coordinate system and position of the free surface,
(a) when t = 0, (b) when t > 0.

water, we find that l∗ ≈ 10−4 m, t∗ ≈ 2 × 10−4 s, u∗ ≈ 0.7 m s−1, p∗ ≈ 500 Pa and
Bo ≈ 3× 10−3 � 1. The length scale is far greater than for pure water, and we would
expect the features of the small-time solution described below to be experimentally
observable. For this fluid, gravity becomes important when t/t∗ ≈ 80.

Suitable dimensionless variables are

x̂ = x/l∗, ŷ = y/l∗, Ŷ = Y /l∗, t̂ = t/t∗, û = u/u∗, p̂ = p/p∗, (2.2)

in terms of which the initial/boundary value problem becomes

∂û

∂t̂
+ û · ∇û = −∇p̂+ ∇2û for ŷ > Ŷ (x̂, t̂ ), (2.3)

∇ · û = 0 for ŷ > Ŷ (x̂, t̂ ), (2.4)

∂Ŷ

∂t̂
= ûy − ûx ∂Ŷ

∂x̂
at ŷ = Ŷ (x̂, t̂ ), (2.5){

1−
(
∂Ŷ

∂x̂

)2}(
∂ûy

∂x̂
+
∂ûx

∂ŷ

)
− 4

∂Ŷ

∂x̂

∂ûx

∂x̂
= 0 at ŷ = Ŷ (x̂, t̂ ), (2.6)

−p̂− 2

{
1 +

(
∂Ŷ

∂x̂

)2}−1 [{
1−

(
∂Ŷ

∂x̂

)2}
∂ûx

∂x̂
+
∂Ŷ

∂x̂

(
∂ûy

∂x̂
+
∂ûx

∂ŷ

)]
+
∂2Ŷ

∂x̂2

{
1 +

(
∂Ŷ

∂x̂

)2}−3/2

= 0 at ŷ = Ŷ (x̂, t̂ ), (2.7)

û = 0, Ŷ = ε|x̂| when t̂ = 0, (2.8)

û→ 0, p̂→ 0 as x̂2 + ŷ2 →∞, (2.9)
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Ŷ = ε|x̂|+ o(1) as x̂→∞, (2.10)

where û = (ûx, ûy). Note that the only parameter that appears in the problem is ε, the
initial slope of the interface. We shall restrict our attention to the behaviour when
|ε| � 1, a fat wedge, with ε < 0 for an inverted wedge. In this case we expect the
deformation of the surface and the subsequent velocity and pressure to remain small,
of O(ε). We therefore define new scaled variables to be

x̂ = x̄, ŷ = ȳ, Ŷ = εY , t̂ = t̄, û = εū, p̂ = εp̄. (2.11)

At leading order as ε→ 0, the initial/boundary value problem becomes

∂ū

∂t̄
= −∇p̄+ ∇2ū for ȳ > 0, (2.12)

∇ · ū = 0 for ȳ > 0, (2.13)

∂Y

∂t̄
= ūy at ȳ = 0, (2.14)

∂ūy

∂x̄
+
∂ūx

∂ȳ
= 0 at ȳ = 0, (2.15)

−p̄− 2
∂ūx

∂x̄
+
∂2Y

∂x̄2
= 0 at ȳ = 0, (2.16)

ū = 0, Y = |x̄| when t̄ = 0, (2.17)

ū→ 0 p̄→ 0 as x̄2 + ȳ2 →∞, (2.18)

Y = |x̄|+ o(1) as x̄→∞. (2.19)

We now have a linear problem to solve in the half-space ȳ > 0. Before proceeding, it
is convenient to reformulate the problem in terms of a streamfunction, ψ, such that
ūx = ∂ψ/∂ȳ and ūy = −∂ψ/∂x̄. We also note that (2.12) and (2.13) show that ∇2p̄ = 0.
After dropping the overbars on the variables for notational convenience, and now
using subscript notation for partial derivatives, for example ψx = ∂ψ/∂x, we arrive at

ψyt = −px + ψxxy + ψyyy for y > 0, (2.20)

pxx + pyy = 0 for y > 0, (2.21)

Yt = −ψx at y = 0, (2.22)

ψxx = ψyy at y = 0, (2.23)

p+ 2ψxy = Yxx at y = 0, (2.24)

ψ = 0, Y = |x| when t = 0, (2.25)

ψ → 0, p→ 0 as x2 + y2 →∞, (2.26)

Y = |x|+ o(1) as |x| → ∞. (2.27)

2.2. The linearized inviscid problem

Before we proceed to solve the full initial/boundary value problem given by (2.20)
to (2.27) it is instructive to consider the inviscid version of the linearized problem.
This was first studied by Keller & Miksis (1983) who showed that the solution is of
similarity form, lengths scaling with t2/3. The linearized version of this problem was
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solved by Billingham & King (1995) using Mellin transforms. Note that when the
fluid is inviscid (2.20) and (2.24) become

ψyt = −px for y > 0, and p = Yxx at y = 0, (2.28)

and we cannot satisfy (2.23), which states that the shear stress vanishes at the free
surface. Note that this is a purely hypothetical simplification, since we have seen
that there is no dimensionless group whose size indicates that viscosity is negligible.
However, we shall show below that the inviscid solution does appear as the leading-
order solution of the full problem for t� 1 in the restricted spatial domain x� t3/4.

We define the Fourier–Laplace transform of each of the dependent variables as, for
example,

ψ̃(ω, y, s) =

∫ ∞
0

e−st
∫ ∞
−∞

eiωxψ(x, y, t)dx dt, (2.29)

with similar definitions for p̃ and Ỹ . After applying this double transform, the inviscid
problem is reduced to

sψ̃y = −iωp̃ for y > 0, (2.30)

p̃yy − ω2p̃ = 0 for y > 0, (2.31)

sỸ +
2

ω2
= −iωψ̃ at y = 0, (2.32)

p̃ = −ω2Ỹ at y = 0, (2.33)

ψ̃ → 0, p̃→ 0 as y →∞. (2.34)

Note that we have used the fact that, as a generalized function, the Fourier transform
of |x| is −2/ω2 in the sense defined by Lighthill (1958). We can now readily show
that

p̃ =
2se−|ω|y

s2 + |ω|3 , ψ̃ =
2iωe−|ω|y

|ω|(s2 + |ω|3) , Ỹ = − 2s

ω2(s2 + |ω|3) . (2.35)

We shall confine our attention to the deformation of the interface, whose transform is
Ỹ . This has simple poles at s = ±i|ω|3/2, and a residue calculation allows us to invert
the Laplace transform. In combination with the Fourier inversion formula this gives

Y (x, t) = −1

π

∫ ∞
−∞

e−iω̂x

ω2
cos (|ω|3/2t) dω. (2.36)

If we now write ξ = x/t2/3, and change the variable of integration to ω̂ = t2/3ω, we
obtain

Y (ξ, t) = − t
2/3

π

∫ ∞
−∞

e−iω̂ξ

ω̂2
cos |ω̂|3/2 dω̂. (2.37)

This is only defined as a generalized function, since there is a non-integrable singularity
in the integrand at ω̂ = 0. However, after subtracting out the transform of the singular
part and rewriting as a semi-infinite integral we arrive at the neat formula

Y (ξ, t) = t2/3YI (ξ) = t2/3

{
|ξ|+ 2

π

∫ ∞
0

cosωξ
(
1− cosω3/2

)
ω2

dω

}
. (2.38)

A simple substitution indicates that our Y (ξ, t) should be equal to t2/3{|ξ| + ỹ(ξ)}
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Figure 2. The function YI (ξ) (solid line) and the initial position of the interface (dotted line).

with ρ = 0 in equation (4.46) of Billingham & King (1995). A few manipulations,
making use of the results

F
[|x|p−1

]
=

2Γ (p) cos
(

1
2
πp
)

|ω|p (2.39)

(Lighthill 1958, p. 43), where F[.] denotes the Fourier transform, and∫ ∞
0

sin ax

x1−µ dx =
Γ (µ)

aµ
sin
(

1
2
πµ
)

(2.40)

(Gradshteyn & Ryzhik 1994, 3.761.4), shows that this is so.
The function YI (ξ) can be calculated using Simpson’s rule to evaluate the integral

in (2.38), and is plotted in figure 2. We can see that the initial singularity in the
curvature of the interface is removed by the action of surface tension when t = 0+.
The corner of the wedge is blunted and capillary waves propagate on the free surface.
The behaviour of these capillary waves for ξ � 1 was calculated by Billingham &
King (1995, Appendix), using manipulations that are far from obvious. Working from
(2.37), we can determine the behaviour for ξ � 1 rather more easily. We first consider
the behaviour of the integrand for |ω̂| � 1, noting that

−2 cos |ω̂|3/2
ω̂2

∼ − 2

ω̂2
+ |ω̂| − 1

12
ω̂4 ∼ F

[
|ξ| − 1

πξ2
+ O(ξ−5)

]
for |ω̂| � 1, |ξ| � 1.

(2.41)

There is also a point of stationary phase at ω̂ = 4
9
ξ2, whose contribution we add to

give

YI = |ξ| − 1

πξ2
− 27

4π1/2|ξ|7/2 sin

(
4

27
|ξ|3 +

π

4

)
+ O(ξ−5) for |ξ| � 1, (2.42)

in agreement with (A 10) of Billingham & King (1995).
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2.3. Numerical solution of the nonlinear inviscid problem

The fully nonlinear inviscid problem, with ε not necessarily small, can be solved using
a boundary integral method, as described by Billingham & King (1995). We confine
our attention in this subsection to positive values of ε. Similar results are obtained
for ε < 0. We define a velocity potential, φ, so that û = ∇φ, and φ is harmonic in the
fluid. We then seek a similarity solution of the form

φ(x, y, t) = t1/3Φ(ξ, η), Y (x, t) = t2/3YN(ξ), (2.43)

where ξ = x/t2/3 and η = y/t2/3. In terms of these variables we must solve the
nonlinear free boundary problem

∇2Φ = 0 for η > YN(ξ), (2.44)

subject to

Φη − ΦξYNξ = 2
3

(
YN − ξYNξ) at η = YN , (2.45)

1
3
Φ− 2

3

(
ξΦξ + YNΦη

)
+ 1

2
|∇Φ|2 = −YNξξ (1 + Y 2

Nξ

)−2/3
at η = YN , (2.46)

Φ→ 0 as ξ2 + η2 →∞, (2.47)

YN = ε |ξ|+ o(1) as |ξ| → ∞, (2.48)

YNξ = 0 at ξ = 0. (2.49)

Green’s integral representation for the harmonic function Φ(ξ, η) in the domain of
solution, D = {(ξ, η) | η > YN(ξ)}, with boundary ∂D = {(ξ, η) | η = YN(ξ)} is

πΦ(r0) =

∫
∂D

{
Φ(r)

∂

∂n
ln |r − r0| − ∂Φ

∂n
(r) ln |r − r0|

}
ds, (2.50)

where

n = (YN,−1) /
(
1 + Y 2

Nξ

)1/2
(2.51)

is the outward unit normal to D. The kinematic condition (2.45) shows that

∂Φ

∂n
= − 2

3

(
ξYNξ − YN) / (1 + Y 2

Nξ

)1/2
(2.52)

on the boundary, ∂D. Using this in the integral representation (2.50), we can formulate
the problem in terms of the value of Φ on ∂D alone, which we denote by

ψ(ξ) = Φ(ξ, YN(ξ)). (2.53)

By exploiting the symmetry of the flow about ξ = 0, we can rewrite (2.50) as

πψ(ξ0) =

∫ ∞
0

ψ(ξ)

[
(ξ − ξ0)Y

′
N(ξ) + YN(ξ0)− YN(ξ)

(ξ − ξ0)2 + (YN(ξ)− YN(ξ0))2

+
(ξ + ξ0)Y

′
N(ξ) + YN(ξ0)− YN(ξ)

(ξ + ξ0)2 + (YN(ξ)− YN(ξ0))2

]
dξ

+
1

3

∫ ∞
0

(ξY ′N(ξ)− YN(ξ))
[
ln
{

(ξ − ξ0)
2 + (YN(ξ)− YN(ξ0))

2
}

+ ln
{

(ξ + ξ0)
2 + (YN(ξ)− YN(ξ0))

2
}]

dξ. (2.54)

By definition

ψ′(ξ) = Φξ + ΦηY
′
N(ξ), (2.55)
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Figure 3. The position of the tip of the wedge evaluated both asymptotically,
assuming ε� 1, and numerically, from the full, nonlinear inviscid problem.

which, along with (2.45), leads to

Φξ =
{

2
3
Y ′N(ξY ′N − YN) + ψ′

}
/(1 + Y ′2N ), (2.56)

Φη =
{
Y ′Nψ

′ − 2
3
Y ′N(ξY ′N − YN)

}
/(1 + Y ′2N ). (2.57)

These can be used to rewrite the Bernoulli condition, (2.46), in terms of ψ, which we
must solve along with the integral equation (2.54).

We discretize at a set of n equally spaced points ξ = ξi = ih for i = 0, 1, . . . , n and
approximate all derivatives with central differences. We truncate the infinite range
of the integrals in (2.54) at nh and discretize using a composite trapezium rule. In
order to deal with the integrable singularity in (2.54) at ξ = ξ0 we use an analytical
integration over the range ξi−1 6 ξ 6 ξi+1 that contains the point ξ = ξ0. In this
manner we are able to achieve a discretization accurate to O(h2). Further details
are given in Billingham & King (1995). This leads to 2(n − 1) equations in 2(n + 1)
unknowns. In order to close the discretized system we use the far-field conditions

ψ = 0, YN = εξn at ξ = ξn, (2.58)

and the symmetry conditions

ψ′ = 0, Y ′N = 0 at ξ = 0. (2.59)

We solved the resulting 2(n+ 1) nonlinear algebraic equations using the NAG routine
C05NBF. This uses a combination of Newtonian iterations and steepest descents. We
took ψ = YN = 0 as our initial guess for the solution with ε small. We then used the
converged solution as the initial guess for a slightly larger value of ε. By continuing
in this manner we obtained converged solutions for 0 6 ε 6 0.82.

Figure 3 shows the position of the tip of the wedge as a function of ε, evaluated
using both the asymptotic linearized and numerical nonlinear solutions. The difference
between the two is less than 4% for ε less than about 0.4. Figure 4 makes the
comparison over the whole free surface for three values of ε.
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Figure 4. The free surface evaluated both asymptotically, assuming ε� 1, and numerically, from
the full, nonlinear inviscid problem, for ε = 0.33, 0.45 and 0.57.

2.4. The full linearized problem

Turning our attention to the full linearized initial/boundary value problem (2.20) to
(2.27), we can define Fourier–Laplace transforms as given before by (2.29) and solve
the resulting equations to arrive at

p̃ =
2(s+ 2ω2)e−|ω|y

K(ω, s)
,

ψ̃ =
2iω|ω|
sK(ω, s)

{
(s+ 2ω2)e−|ω|y

ω2
− 2e−(s+ω2)1/2y

}
, Ỹ =

2

s

( |ω|
K(ω, s)

− 1

ω2

)
,

 (2.60)

where

K(ω, s) = (s+ 2ω2)2 + |ω|3{1− 4
(
s+ ω2

)1/2}. (2.61)

2.4.1. The deformation of the interface for t� 1

Using (2.60) and (2.61) we can write the deformation of the interface as

Y (x, t) =
1

2π

∫ ∞
−∞

e−iωx 1

2πi

∫ c+i∞

c−i∞
2eσ

σ

×
{

|ω|(
t−1σ + 2ω2

)2
+ |ω|3 − 4|ω|3 (t−1σ + ω2

)1/2
− 1

ω2

}
dσ dω, (2.62)

where c is real and takes the Laplace inversion contour to the right of any singularities
in the integrand. We have also made the change of variable σ = st. We can obtain
the behaviour of Y for x = O(1) by expanding the integrand for t� 1 so that

Y (x, t) ∼ 1

2π

∫ ∞
−∞

e−iωx 1

2πi

∫ c+i∞

c−i∞
2eσ

σ

×
(
− 1

ω2
+ t2
|ω|
σ2
− 4t3

|ω|3
σ3

)
dσ dω as t→ 0 for x = O(1). (2.63)
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Evaluating these inverse Fourier transforms of generalized functions leads to

Y (x, t) ∼ |x| − t2

πx2
− 2t3

πx4
as t→ 0 for x = O(1). (2.64)

The first two terms are the same as those that appear in the far-field expansion of
the inviscid solution, (2.42). They indicate that the expansion becomes non-uniform
when x = O(t2/3). The third term is due to the effect of viscosity and leads to an
earlier non-uniformity, between the second and third terms when x = O(t1/2).

We can examine the deformation of the interface when x = O(t1/2) by defining
x = t1/2x̂, ω = t−1/2ω̂, in terms of which (2.62) gives

Y (x̂, t) ∼ t1/2|x̂|+ t

2π

∫ ∞
−∞

e−iω̂x̂ 1

2πi

∫ c+i∞

c−i∞
2eσ

σ

×
{

|ω̂|(
σ + 2ω̂2

)2 − 4|ω̂|3 (σ + ω̂2
)1/2

}
dσ dω̂ as t→ 0 for x̂ = O(1). (2.65)

It is now tempting to define a new variable σ̂ = σω̂−2 in order to simplify this double
integral. However, since ω̂ passes through zero this is not possible. Note that the
integrand is of O(|ω̂|−1) as |ω̂| → ∞, so the inverse Fourier transform only exists as
a generalized function. In order to reformulate (2.65) in terms of ordinary functions,
so that the inversion integral can be evaluated, we first note that

F−1

[
1

|ω̂|
]

= −1

π
log |x̂|+ C(t), F

[
−1

π
log |x̂|

]
=

1

|ω̂| , (2.66)

where F−1[.] denotes the inverse Fourier transform, and C(t) is an undetermined
function. This indeterminacy in the inverse transform of 1/|ω̂| is discussed by Lighthill
(1958) and proves to be crucial in the following analysis. Using (2.66) along with the
convolution theorem we can also show that

F

[
−1

π
log |x̂|+ 1

2π

∫ ∞
−∞

log |X − x̂|e−|X|dX
]

=
|ω̂|

1 + ω̂2
. (2.67)

By subtracting this function from the integrand in (2.65) we arrive at

Y (x̂, t) ∼ t1/2|x̂|+ tY1(x̂) as t→ 0 for x̂ = O(1), (2.68)

where

Y1(x̂) =− i

π2

∫ c+i∞

c−i∞
eσ

σ

∫ ∞
0

cos ω̂x̂

{
ω̂(

σ+2ω̂2
)2−4ω̂3

(
σ+ ω̂2

)1/2
− ω̂

2σ
(
1+ ω̂2

)}dω̂ dσ

−1

π
log |x̂|+ 1

2π

∫ ∞
−∞

log |X − x̂|e−|X| dX. (2.69)

There are simpler ways of writing this inverse Fourier transform in terms of ordinary
functions, but the formulation given by (2.69) is convenient for numerical evaluation.
The function Y1(x̂) is plotted in figure 5. The integrals in (2.69) were evaluated
using Simpson’s rule, taking care to evaluate the final integral analytically in the
neighbourhood of its integrable logarithmic singularity.
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Figure 5. The function Y1(x̂).

In order to compare this asymptotic result with the full solution we use

Y (x, t) = |x| − i

π2

∫ ∞
0

cosωx

∫ c+i∞

c−i∞
ωest

s{(s+ 2ω2
)2

+ ω3 − 4ω3
(
s+ ω2

)1/2}
ds dω,

(2.70)

and evaluate the double integral numerically using Simpson’s rule. Suitably scaled
versions of the asymptotic expression (2.68) for the position of the interface are
compared with the numerically evaluated solution in figure 6, and are in excellent
agreement.

The expansion (2.68) matches with (2.64) as x̂→∞, and

Y (x̂, t) ∼ t1/2|x̂| − t1
π

log |x̂|+ αt as x̂→ 0, (2.71)

where

α = − i

π2

∫ c+i∞

c−i∞
eσ

σ

×
∫ ∞

0

{
ω̂(

σ + 2ω̂2
)2 − 4ω̂3

(
σ + ω̂2

)1/2
− ω̂

2σ
(
1 + ω̂2

)} dω̂ dσ − γ ≈ −0.18, (2.72)

and γ is Euler’s constant. This becomes non-uniform when x̂ = O(t1/2 log(1/t)),
x = O(t log(1/t)). However, if we return to (2.62) and look for distinguished limits
where terms in the integrand balance, we find that a scaling with x = O(t) suggests
itself for the next, inner, asymptotic region. This suggests that the non-uniformity
where x = O(t log(1/t)) is passive. The divergence between the logarithmic singularity
in the asymptotic solution, and the bounded, numerical solution can be seen in
figure 6.

We proceed by defining new variables x = tx̄ and ω = t−1ω̄, in terms of which we
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Figure 6. The deformation of the interface evaluated both numerically and asymptotically using
(2.68) for t = 0.05 and 0.1.

find that

Y (x̄, t) ∼ −2t

π

∫ ∞
−∞

eiω̄x̄

ω̄2

1

2πi

∫ c+i∞

c−i∞
σ2eσ

2σ + |ω̄|dσ dω̄ as t→ 0 for x̄ = O(1). (2.73)

The integrand has a simple pole at σ = − 1
2
|ω|, and hence

Y (x̄, t) ∼ − t
π

∫ ∞
−∞

eiω̄x̄−|ω̄|/2

ω̄2
dω̄ as t→ 0 for x̄ = O(1). (2.74)

Again, this only exists as a generalized function, since there is a non-integrable
singularity at ω̄ = 0. We therefore write

t−1Y (x̄, t) ∼ −2

π

∫ ∞
0

cos ω̄x̄

ω̄2
(e−|ω̄|/2 − 1 + 1

2
ω̄)dω̄

+ |x| − 1

π
log |x̄|+ C(t) as t→ 0 for x̄ = O(1). (2.75)

The integral is now defined in the usual sense, at least for x̄ > 0, and can be evaluated
analytically using the convolution theorem. All that remains is to determine the
function C(t). This can be found from matching with expansion (2.71) as x̄ → ∞,
which shows that

C(t) ∼ 1

2π
log(1/t) + α as t→ 0, (2.76)

and hence that

Y (x̄, t) ∼ t

π

{
2x̄ tan−1 2x̄− 1

2
log
(
1 + 4x̄2

)
+1 + log 2 + πα+ 1

2
log(1/t)

}
as t→ 0 for x̄ = O(1). (2.77)



Surface-tension-driven flow in fat fluid wedges and cones 57

0.04

0.08

0.05 0.10 0.15 0.20

t

Y (0, t)

0.16

0 0.25

0.12

Figure 7. A comparison of the position of the tip of the wedge evaluated numerically from (2.70)
(solid line), and asymptotically for t� 1 using (2.78) (broken line).

In particular the tip of the wedge lies at

Y (0, t) ∼ t

π

(
1 + log 2 + πα+ 1

2
log(1/t)

)
as t→ 0. (2.78)

In the inviscid solution, the velocity of the tip was algebraically singular of O(t−1/3).
We can now see that the effect of viscosity is to weaken this to a logarithmic singularity
of O(log(1/t)), but that it does not remove it completely. At first sight, this suggests
that there is a problem, since our original assumption was that û = O(ε), and now
we have found that u is singular near the tip of the wedge as t → 0. However, the
only way in which we have used the assumption that û = O(ε) is in neglecting the
nonlinear term, û · ∇û, in (2.3). This remains uniformly smaller than the pressure
gradient and viscous stress terms on the right-hand side of (2.3), which dominate in
the final asymptotic region, where r = O(t). Hence our results are correct at leading
order.

We can now compare the asymptotic solution in this final region with the full solu-
tion by evaluating (2.70) numerically using Simpson’s rule. The asymptotic expression
(2.78) for the position of the tip of the wedge is compared with the numerically
evaluated solution in figure 7, and is in excellent agreement. We can also use (2.68)
and (2.77) to construct a composite solution

Y (x, t) ∼ − it

π2

∫ c+i∞

c−i∞
eσ

σ

×
∫ ∞

0

cos ω̂x̂

{
ω(

σ + 2ω̂2
)2 − 4ω̂3

(
σ + ω̂2

)1/2
− ω̂

2σ
(
1 + ω̂2

)} dω̂ dσ

+
t

2π

∫ ∞
−∞

log |X − x̂|e−|X|dX +
t

π

{
2x̄ tan−1 2x̄− 1

2
log
(
1 + 4x̄2

)
+1 + log 2 + 1

2
log(1/t)

}
as t→ 0 for x > 0. (2.79)

This composite solution is compared with the solution evaluated numerically using
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Figure 8. The deformation of the interface evaluated both numerically from (2.70) and
asymptotically using the composite solution (2.79) for t = 0.05 and 0.1.

(2.70) at t = 0.05 and 0.1 in figure 8. We expect the difference between the numerical
and asymptotic solutions to be of O(t2), consistent with figure 8.

Having determined the order of magnitude of the deformation of the free surface,
we can use the same approach to find the size of the fluid pressure and velocity using
(2.62). When x = O(t1/2) and y = O(t1/2), p = O(t−1/2), u = O(1) and Y = O(t). This
means that all three terms in the momentum equation, (2.12), appear at leading order,
but that the term Yxx, which models the effect of surface tension, is absent at leading
order from the Bernoulli condition, (2.16). When x = O(t) and y = O(t), p = O(t−1),
ux = O(1), uy = −(log t)/2π + O(1) and Y = −t(log t)/2π + O(t). In this case, the
inertial term, ∂u/∂t, does not appear at leading order in (2.12), and the bulk flow is
dominated by viscosity. However, all three terms in (2.16) appear at leading order.
Note that the spatially uniform translation of the O(t) tip region at a speed of O(log t)
is analagous to the behaviour during viscous pinchoff of a thread, investigated by
Lister & Stone (1998). They deduced this scaling by considering the Stokes flow
induced by surface tension in a fixed cone of viscous fluid. To summarize, when
x, y = O(t1/2) the flow is dominated by inertia and viscosity, whilst for x, y = O(t) the
flow is dominated by viscosity and surface tension.

2.4.2. The deformation of the interface for t� 1

For t � 1 we expect the inviscid solution, which we examined in § 2.2, to emerge
at leading order. If we define ξ = x/t2/3, ω̃ = ωt2/3 and substitute into (2.62) we
find that

Y (ξ, t) ∼ t2/3

2π

∫ ∞
−∞

eiω̃ξ 1

2πi

∫ c+i∞

c−i∞
2|ω̃|eσ
σ

{
1(

σ + 2t−1/3ω̃2
)2

+ |ω̃|3 −
1

|ω̃|3
}

dσ dω̃

as t→∞ for ξ = O(1). (2.80)

If we neglect the term of O(t−1/3) we obtain precisely the inviscid solution, which
reduces to (2.38). In order to examine the correction due to viscosity it is convenient
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Figure 9. The deformation of the interface calculated from the asymptotic solution valid for t� 1,
(2.81), when t = 103, 106, 109 and 1012 compared with the inviscid solution, (2.38). The asymptotic
solutions have been displaced by multiples of 0.25 so that the differences are visible.

to consider the asymptotic solution in the form (2.80). The integrand has poles at
σ = ±i|ω̃|3/2 − 2t−1/3ω̃2, and a straightforward residue calculation shows that

Y (ξ, t) = t2/3
[
|ξ| − 2

π

∫ ∞
0

cos ω̃ξ

ω̃2

{
1− cos ω̃3/2 exp

(−2t−1/3ω̃2
)}

dω̃

]
+ O(t1/3)

as t→∞ for ξ = O(1). (2.81)

We can evaluate this integral numerically for various values of t using the NAG
routine D01ASF, an algorithm for evaluating oscillatory integrals. Some solutions are
shown in figure 9, along with the inviscid solution, YI (ξ). When t = 103 the solution
looks qualitatively similar to the solution for t � 1, with a single minimum. When
t = 106 capillary waves are beginning to emerge. The remaining two solutions, for
t = 109 and 1012, show how the extent of the waves on the surface, in terms of the
similarity variable, ξ = x/t2/3, increases as t increases. When t = 1012 the asymptotic
solution is indistinguishable from the inviscid solution for 0 6 ξ 6 10. Note that we
have not attempted to compare this asymptotic solution with the numerical solution
of the full problem, since it is extremely difficult to evaluate the double integral (2.70)
for such large values of t.

We can quantify these observations by considering more carefully the behaviour of
the integral in (2.81), which is the same as that in (2.37), but with an extra exponential
in the integrand. If we analyse (2.81) for |ξ| � 1 by evaluating the contribution from
the neighbourhood of ω̃ = 0 and the point of stationary phase at ω̃ = 4

9
ξ2, we find

that

Y (ξ, t) ∼ t2/3
{
|ξ| − 1

πξ2
− 27

4π1/2|ξ|7/2 sin

(
4|ξ|3
27

+
π

4

)
exp

(
−32

81
ξ4t−1/3

)}
for |ξ| � 1. (2.82)

The extra exponential in the integrand leads to damping of the capillary waves in
the far field. More precisely, the inviscid solution provides the leading-order solution
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for ξ � t1/12, x � t3/4. We should now rescale into an asymptotic region where
ξ = O(t1/12), x = O(t3/4), but we find that this region is passive and simply reproduces
the far-field solution, (2.82), at leading order. For ξ � t1/12, x � t3/4, the capillary
waves are exponentially damped by viscosity. This is consistent with the results
presented in figure 9.

One possible difficulty with these solutions is that, since Y ∼ x as x → ∞, our
assumption that Ŷ = εY = O(ε) is not valid when x = O(ε−1). First, we note that
the terms involving Y that we have neglected in the governing equations are all
x-derivatives of Y , and hence remain uniformly small as x → ∞. The only possible
problem lies in applying the boundary conditions at y = 0, rather than y = εY .
However, in the far field we expect that all of the dependent variables are functions

of
√
x2 + y2, and hence, on the boundary, functions of

√
x2 + ε2Y 2. This means that

even when x = O(ε−1) our approximation remains valid.

3. The fat cone
3.1. Formulation of the initial/boundary value problem

Consider an initially stationary cone of incompressible fluid with semi-angle π/2 −
tan−1 ε. In this case we work in cylindrical polar coordinates, (r, θ, z), and seek an
axisymmetric solution. The position of the free surface is given by z = Z(r, t), as
illustrated in figure 1 substituting r for x, z for y and Z for Y . Proceeding as in
§ 2, we non-dimensionalize using scales (2.1) and linearize to obtain the leading-order
problem for |ε| � 1,

ψzt = −pr + ψrrz + ψzzz +
1

r
ψrz − 1

r2
ψz for z > 0, (3.1)

prr +
1

r
pr + pzz = 0 for z > 0, (3.2)

Zt = −ψr − 1

r
ψ at z = 0, (3.3)

ψrr +
1

r
ψr +

1

r2
ψ = ψzz at z = 0, (3.4)

p+ 2ψrz +
2

r
ψz = Zrr +

1

r
Zr at z = 0, (3.5)

ψ = 0, Z = r when t = 0, (3.6)

ψ → 0, p→ 0 as r2 + z2 →∞, (3.7)

Z = r + o(1) as r →∞, (3.8)

which is the initial/boundary value problem for the fat cone equivalent to (2.20) to
(2.27) for the fat wedge, with the radial and axial components of the velocity given
by ur = ψz and uz = −ψr . Note that, physically, the main difference is that there is
curvature about the z-axis, which manifests itself as the extra term (1/r)Zr in (3.5).
This term is equal to 1/r when the cone is undisturbed, with Z = r, so that surface
tension immediately induces a flow at infinity.
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3.2. The linearized inviscid problem

For a fat inviscid cone, (3.1) and (3.5) become

ψzt = −pr for z > 0, and p = Zrr +
1

r
Zr at z = 0, (3.9)

whilst (3.4) cannot be satisfied. We proceed by defining Hankel–Laplace transforms
as

Z̃(ν, s) =

∫ ∞
0

e−st
∫ ∞

0

rJ0(νr)Z(r, t)dr dt, (3.10)

p̃(ν, z, s) =

∫ ∞
0

e−st
∫ ∞

0

rJ0(νr)p(r, z, t)dr dt, (3.11)

ψ̃(ν, z, s) =

∫ ∞
0

e−st
∫ ∞

0

rJ1(νr)p(r, z, t)dr dt. (3.12)

The inviscid problem is thereby reduced to

sψ̃z = νp̃ for z > 0, (3.13)

p̃zz − ν2p̃ = 0 for z > 0, (3.14)

sZ̃ +
1

ν3
= −νψ̃ at z = 0, (3.15)

p̃ = −ν2Z̃ at z = 0, (3.16)

ψ̃ → 0, p̃→ 0 as z →∞. (3.17)

Note that we have made use of the fact that, as a generalized function, the order-zero
Hankel transform of r is −1/ν3. Further details concerning Hankel transforms of
generalized functions are given in the Appendix (see also Misra & Lavoine 1986).

It is easy to show that

p̃ =
se−νz

ν(s2 + ν3)
, ψ̃ = − e−νz

ν(s2 + ν3)
, Z̃ = − s

ν3(s2 + ν3)
. (3.18)

Proceeding as for the fat wedge, we let ξ = r/t2/3, and perform a residue calculation
to find that

Z(ξ, t) = t2/3ZI (ξ) = t2/3
{
ξ +

∫ ∞
0

J0(νξ)
1− cos ν3/2

ν2
dν

}
. (3.19)

The function ZI can be calculated numerically using Simpson’s rule, and is illustrated
in figure 10. As for the fat wedge, the tip of the fat cone is blunted by the action of
surface tension, and capillary waves propagate away on the free surface. Note that

ZI (0) = 1
2
πYI (0). (3.20)

In other words, the tip of a fat inviscid cone snaps back a distance π/2 ≈ 1.57 times
further than the tip of a fat wedge, as the extra curvature about the z-axis causes
surface tension to pull it back more strongly. Note also that, since ψ̃ ∼ −e−νz/νs2 as
ν → 0,

ψ ∼ t

r

(
1− z√

r2 + z2

)
for r2 + z2 � 1, (3.21)



62 J. Billingham

0

1

2

3

4

5

–4 –2 0 2 4

ξ

ZI

Figure 10. The function ZI (ξ) (solid line) and the initial position
of the interface (dotted line).

and hence

uz ∼ tz(
r2 + z2

)3/2
for r2 + z2 � 1, (3.22)

and

2π

∫ ∞
0

ruzdr ∼ 2πt for z � 1. (3.23)

This means that in the far field there is a non-zero total flux of fluid through any
plane where z is constant, which increases linearly with t. This occurs because the
curvature of the free surface is non-zero in the far field and drives an acceleration of
the fluid. This is not the case for the fat wedge, where there is no curvature in the
far field, and hence no net flux of fluid. This means that the area under the curve
y = YI − |x| must be zero, by conservation of mass, but that this is not true for the
curve z = ZI − r.

We can determine the behaviour of ZI in the far field, proceeding as for the fat
wedge (see the Appendix), and find that

ZI ∼ ξ −
{

2

3
+

81

8
√

2
sin

(
4

27
ξ3

)}
1

ξ5
for ξ � 1. (3.24)

For the fat wedge, (2.42), the deformation of the interface is of O(1/ξ2) as ξ → ∞,
whilst the amplitude of the capillary waves is of O(1/ξ7/2). The behaviour for the
fat cone is dramatically different, with both the deformation of the interface and
the amplitude of the capillary waves much smaller, of O(1/ξ5). This is due to a
combination of the geometrical effect of the spreading of the waves and the extra
surface tension force caused by the curvature about the z-axis. This is illustrated in
figure 11, where the envelope of the capillary waves, given by

Ze(ξ) = −
(

2

3
± 81

8
√

2

)
1

ξ5
, (3.25)

is plotted against ZI−ξ, evaluated numerically using Simpson’s rule, and is in excellent
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Figure 11. The deformation of the interface, ZI (ξ)− ξ, (solid line) and the far-field envelope of
the capillary waves, Ze(ξ), (broken line).

agreement. Note that we have not attempted to resolve the high-frequency oscillations
given by (3.24) in this numerical solution. In addition, we note that the wavelength
of the capillary waves is 27π/2ξ2, the same as for the fat wedge, but that there is a
phase difference of π/4 between the waves in the far field of the fat wedge and those
of the fat cone.

3.3. The full linearized problem

The Hankel–Laplace transform of the solution of the full linearized problem, (3.1) to
(3.8), is

p̃ =
(s+ 2ν2)e−νz

νK(ν, s)
,

ψ̃ = − ν

sK(ν, s)

{
(s+ 2ν2)e−νz

ν2
− 2e−(s+ν2)1/2z

}
, Z̃ =

1

s

(
1

K(ν, s)
− 1

ν3

)
,

 (3.26)

where

K(ν, s) = (s+ 2ν2)2 + ν3{1− 4
(
s+ ν2

)1/2}. (3.27)

3.3.1. The deformation of the interface for t� 1

We proceed exactly as we did for the fat wedge, and conclude that the same
asymptotic structure emerges. We find that

Z(r, t) ∼ r +
192

35
√
π

t7/2

r5
for r � t1/2. (3.28)

There are corrections to this asymptotic expansion that are exponentially small
provided r � t1/2. Further details of this calculation are given in the Appendix. In
order to compare this asymptotic result with the full solution we use

Z(r, t) = r − i

2π

∫ ∞
0

J0(νr)

∫ c+i∞

c−i∞
νest

s{(s+ 2ν2
)2

+ ν3 − 4ν3
(
s+ ν2

)1/2}
ds dν, (3.29)
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Figure 12. Comparison of the deformation of the interface when t = 0.1 calculated numerically
from (3.29) (solid line) and asymptotically, (3.28) (broken line).

and evaluate the double integral numerically using Simpson’s rule. Figure 12 shows a
comparison between the position of the interface when t = 0.1 calculated numerically
from (3.29) and the asymptotic behaviour given by (3.28). The agreement between
the two is excellent. Note that the numerical solution is rather ragged due to the
difficulty in calculating such small deformations accurately without being wasteful of
c.p.u. time.

We can examine the deformation of the interface when r = O(t1/2) by defining
r = t1/2r̂, ν = t−1/2ν̂. We find that

Z(r̂, t) ∼ t1/2r̂ + tZ1(r̂) as t→ 0 for r̂ = O(1), (3.30)

where

Z1(r̂) =− i

2π

∫ c+i∞

c−i∞
eσ

σ

∫ ∞
0

J0 (ν̂ r̂)

×
{

ν̂(
σ+2ν̂2

)2−4ν̂3
(
σ + ν̂2

)1/2
− ν̂

2σ
(
ν̂4 +4

)1/2

}
dν̂ dσ+ 1

2
J0(r̂)K0(r̂). (3.31)

The function Z1(r̂) is plotted in figure 13. The integrals in (3.31) were evaluated using
Simpson’s rule. Suitably scaled versions of the asymptotic expression (3.30) for the
position of the interface are compared with the numerically evaluated solution in
figure 14, and are in excellent agreement for r � t.

We find that

Z(r̂, t) ∼ t1/2r̂ − t 1
2

log r̂ + βt as r̂ → 0, (3.32)

where

β = − i

2π

∫ c+i∞

c−i∞
eσ

σ

∫ ∞
0

{
ν̂(

σ + 2ν̂2
)2 − 4ν̂3

(
σ + ν̂2

)1/2
− ν̂

2σ
(
4 + ν̂4

)1/2

}
dν̂ dσ

+ 1
2

(log 2− γ) ≈ 0.065. (3.33)

The divergence between the logarithmic singularity in the asymptotic solution, and the
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Figure 13. The function Z1(r̂).
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Figure 14. The deformation of the interface evaluated both numerically and asymptotically for
t = 0.05 and 0.1.

bounded, numerical solution can be seen in figure 14, and is rather more pronounced
than for the wedge, figure 6, due to the different scales of the horizontal axes.

In order to construct the solution in the final asymptotic region, we define new
variables r = tr̄ and ν = t−1ν̄ and, after a simple residue calculation, find that

Z(r̄, t) ∼ −t
∫ ∞

0

J0(ν̄ r̄)
e−ν̄/2

ν̄2
dν̄ as t→ 0 for r̄ = O(1). (3.34)

Again, this only exists as a generalized function, since there is a non-integrable
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singularity at ν̄ = 0. We therefore write

t−1Z(r̄, t) ∼ −
∫ ∞

0

J0(ν̄ r̄)

ν̄2
(e−ν̄/2 − 1 + 1

2
ν̄)dν̄ + r̄ − 1

2
log r̄ + D(t)

as t→ 0 for r̄ = O(1). (3.35)

We must now determine the asymptotic behaviour of the unknown function of time,
D(t), by matching with the previous region. We find that

D(t) ∼ 1
4

log(1/t) + β for t� 1, (3.36)

and hence that the tip of the cone lies at

Z(0, t) ∼ t ( 1
4

log(1/t) + β + δ
)

as t→ 0, (3.37)

where

δ = lim
r̄→0

[∫ ∞
0

J0(ν̄ r̄)

ν̄2
(1− 1

2
ν̄ − e−ν̄/2)dν̄ − 1

2
log r̄

]
≈ 0.50. (3.38)

As for the fat wedge, viscosity weakens the initial singularity in the velocity from
O(t−1/3) to O(log(1/t)). In addition, as we saw for the inviscid solution, (3.20), the tip
of the cone moves π/2 times faster than that of the wedge, at leading order for t� 1,
since

Z(0, t) ∼ 1
2
πY (0, t) as t→ 0. (3.39)

We can now compare the asymptotic solution in this final region with the full solu-
tion by evaluating (3.29) numerically using Simpson’s rule. The asymptotic expression
(3.37) for the position of the tip of the wedge is compared with the numerically
evaluated solution in figure 15, and is in excellent agreement. We can also construct
a composite solution

Z(r, t) ∼ tZ1(r̂)− t
∫ ∞

0

J0(ν̄ r̄)

ν̄2
(e−ν̄/2 − 1 + 1

2
ν̄)dν̄ as t→ 0 for r > 0. (3.40)

This composite solution is compared with the solution evaluated numerically using
(3.29) at t = 0.05 and 0.1 in figure 16. We expect the difference between the numerical
and asymptotic solutions to be of O(t2), consistent with figure 16.

3.3.2. The deformation of the interface for t� 1

If we define ξ = r/t2/3, ν̃ = νt2/3 and substitute into (3.29) we find that

Z(ξ, t) ∼ t2/3
∫ ∞

0

ν̃J0 (ν̃ξ)
1

2πi

∫ c+i∞

c−i∞
eσ

σ

{
1(

σ + 2t−1/3ν̃2
)2

+ ν̃3
− 1

ν̃3

}
dσ dν̃

as t→∞ for ξ = O(1). (3.41)

A residue calculation shows that

Z(ξ, t) = t2/3
[
ξ −

∫ ∞
0

J0 (ν̃ξ)

ν̃2

{
1− cos ν̃3/2 exp

(−2t−1/3ν̃2
)}

dν̃

]
+ O(t1/3)

as t→∞ for ξ = O(1). (3.42)

We can evaluate this integral numerically for various values of t using Simpson’s
rule. Some solutions are shown in figure 17, along with the inviscid solution, ZI (ξ).
The behaviour is qualitatively the same as for the fat wedge, although the cap-
illary waves have a much smaller amplitude, as discussed in § 3.2. We can again
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Figure 15. A comparison of the position of the tip of the cone evaluated numerically from (3.29)
(solid line), and asymptotically for t� 1 using (3.37) (broken line).
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Figure 16. The deformation of the interface evaluated both numerically from (3.29) and
asymptotically using the composite solution (3.40) for t = 0.05 and 0.1.

quantify this observation by considering more carefully the behaviour of the in-
tegral in (3.42). If we analyse (3.42) for ξ � 1 by evaluating the contribution
from the neighbourhood of ν̃ = 0 and the point of stationary phase, we find
that

Z(ξ, t) ∼ ξ − 1

ξ5

{
2

3
+

81

8
√

2
sin

(
4

27
ξ3

)
exp

(
−32

81
ξ4t−1/3

)}
for ξ � 1. (3.43)

The extra exponential in the integrand leads to damping of the capillary waves in
the far field, consistent with the results presented in figure 17. Note that this means,
both for the fat wedge and the fat cone, that significant numbers of capillary waves
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Figure 17. The deformation of the interface calculated from the asymptotic solution valid for t� 1,
(3.42), when t = 103, 106, 109 and 1012 compared with the inviscid solution, (3.19). The asymptotic
solutions have been displaced by multiples of 0.25 so that the differences are visible.

are only generated when t1/12 is sufficiently large. This, along with the rapid rate of
decay of the amplitude of the waves on the fat cone, provides some insight into why
few capillary waves are seen on the surface of a droplet immediately after it detaches
from a dripping tap (Peregrine et al. 1990).

4. Conclusions
In this paper we have analysed the effect of viscosity on the surface-tension-driven

deformation of wedges and cones with semi-angles close to π/2. We have shown the
following:

(a) The singularity in the fluid velocity as t → 0 is reduced from O(t−1/3) for the
inviscid solution to O(log(1/t)) for the linearized, viscous solution.

(b) For t� 1 there is an inner, tip region with size of O(t), dominated by surface
tension and viscosity, and an outer region with size of O(t1/2), dominated by inertia
and viscosity.

(c) For t� 1, the tip of the cone moves π/2 times faster than that of the wedge.
(d) For t� 1, the deformation of the interface asymptotes to the inviscid solution

in the region where x� t3/4 for the wedge, r � t3/4 for the cone.
(e) The capillary waves on the interface are damped out by viscosity for distances

of O(t3/4) from the tip for t� 1, and hence t1/12 must be large for significant numbers
of capillary waves to be observed on the free surface.
We have also been able to compare the behaviour of the inviscid wedge and cone in
this limit and found the following:

(a) The tip of the cone moves π/2 times faster than that of the wedge.
(b) The rate of decay of the mean deformation of the surface in the far field is of

O(1/x2) for the wedge and O(1/r5) for the cone.
(c) The rate of decay of the amplitude of the capillary waves in the far field is of

O(1/x7/2) for the wedge and O(1/r5) for the cone.
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(d) The wavelengths of the capillary waves in the far field are identical, 27π/2x2

or 27π/2r2, for the wedge and the cone.
The methods used in this paper could be extended to account for the presence

of an outer fluid, with results relevant to the situation studied by Lister & Stone
(1998). It is also of interest to know whether the asymptotic structure of the small-
and large-time solutions is also appropriate for wedges and cones that are not fat
(ε = O(1)).

I would like to thank Professor Andy King for his helpful comments on the final
draft of this paper.

Appendix. Hankel transforms of generalized functions

In comparison to the straightforward explanation of the use of Fourier transforms
of generalized functions given by Lighthill (1958), the literature on Hankel transforms
of generalized functions is rather more obscure as far as an applied mathematician
is concerned. The most useful account is probably that given by Misra & Lavoine
(1986). In particular, we are interested in the zero-order Hankel transform, H0[r

n],
of powers of r, which is given as an example by Misra & Lavoine, p. 280. Their
definition of the Hankel transform is slightly different to that used here, and we find
that

H0[r
n] =

2n+1

νn+2

Γ
(
1 + 1

2
n
)

Γ
(− 1

2
n
) (A 1)

for n not equal to an even integer. Taken at face value, (A 1) indicates that when n
is a positive even integer or zero, the Hankel transform of rn is zero. We shall see
below that when we are estimating inverse Hankel transforms asymptotically, this is
indicative of exponentially small, rather than algebraic, behaviour, and hence that we
can usually use (A 1) unless n is a negative even integer. These awkward negative even
values of n are associated with combinations of powers and logarithms. In particular,
by using the identity

H0[f(x)] = −1

ν
H1[f

′(x)], (A 2)

where a prime denotes differentiation and H1[.] is the Hankel transform of order one,
we can see that

H0[log x] = − 1

ν2
. (A 3)

Since the Hankel transform has the property of being its own inverse, this formula
gives

H0

[
1

x2

]
= − log ν + C, (A 4)

where C is an undetermined constant that arises for the reasons outlined by Lighthill
(1958) for Fourier transforms. Further applications of similar identities gives, for
example,

H0[x
2 log x] =

4

ν4
, (A 5)

although this is not needed in the analysis presented here.
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Analysis of the far field of the inviscid linearized solution for the cone

Equation (3.19) shows that

ZI (ξ) = −H0

[
cos ν3/2

ν3

]
. (A 6)

In order to approximate this for ξ � 1 we must consider the asymptotic behaviour
for ν � 1. Since

cos ν3/2

ν3
∼ 1

ν3
− 1

2
+

1

24
ν3 as ν → 0, (A 7)

a simple application of (A 1) indicates that

ZI (ξ, t) ∼ ξ − 2

3ξ5
as ξ →∞. (A 8)

However, in this case we must take care to include the contribution due to the point
of stationary phase, and hence arrive at the final approximation, (3.24).

Analysis of the full linearized solution for the cone when r = O(1) and t� 1

Using (3.29) we can show that

Z(r, t)− r ∼ t2

2πi

∫ c+i∞

c−i∞
eσ

σ

∫ ∞
0

νJ0(νr)
1

σ2 + 4σν2t− 4ν3σ1/2t3/2
dν dσ

for r = O(1) as t→ 0. (A 9)

It is now instructive to note that

H0

[
1

ν2 + 1
4
σt−1

]
= K0

(
r

2t1/2
σ1/2

)
. (A 10)

This means that, if we simply neglect the term 4ν3σ1/2t3/2 in the denominator of the
integrand in (A 9), we obtain an exponentially small contribution, provided r � t1/2.
This is consistent with the fact that the expansion of the argument of the Hankel
transform in (A 10) for t � 1 consists of positive even powers of ν only. We must
therefore include the term 4ν3σ1/2t3/2 in the denominator of the integrand in (A 9)
in order to pick up the algebraic behaviour of the deformation of the interface.
Since

1

σ2 + 4σν2t− 4ν3σ1/2t3/2
∼ 1

σ2

(
1− 4t

σ
ν2 +

4t3/2

σ3/2
ν3

)
as t→ 0, (A 11)

a simple application of (A 1) leads to the asymptotic approximation (3.28).
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